Singularity Analysis for Heavy-Tailed Random Variables

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak max-sum equivalence for dependent heavy-tailed random variables

This paper considers the real-valued random variables X1, . . . , Xn with corresponding distributions F1, . . . , Fn, such that X1, . . . , Xn admit some dependence structure and n(F1 + · · · + Fn) belongs to the class dominatedly varying-tailed distributions. The weak equivalence relations between the quantities P(Sn > x), P(max{X1, . . . , Xn} > x), P(max{S1, . . . , Sn} > x) and ∑n k=1 Fk(x)...

متن کامل

Maxima of Sums of Heavy-tailed Random Variables

In this paper, we investigate asymptotic properties of the tail probabilities of the maxima of partial sums of independent random variables. For some large classes of heavy-tailed distributions, we show that the tail probabilities of the maxima of the partial sums asymptotically equal to the sum of the tail probabilities of the individual random variables. Then we partially extend the result to...

متن کامل

Heavy-tailed random matrices

We discuss non-Gaussian random matrices whose elements are random variables with heavy-tailed probability distributions. In probability theory heavy tails of the distributions describe rare but violent events which usually have dominant influence on the statistics. They also completely change universal properties of eigenvalues and eigenvectors of random matrices. We concentrate here on the uni...

متن کامل

Tail Probability and Singularity of Laplace-Stieltjes Transform of a Heavy Tailed Random Variable

In this paper, we will give a sufficient condition for a non-negative random variable X to be heavy tailed by investigating the Laplace-Stieltjes transform of the probability distribution function. We focus on the relation between the singularity at the real point of the axis of convergence and the asymptotic decay of the tail probability. Our theorem is a kind of Tauberian theorems.

متن کامل

Renewal theory for random variables with a heavy tailed distribution and finite variance

Let X1, X2, . . . Xn be independent and identically distributed (i.i.d.) non-negative random variables with common distribution function (d.f.) F with unbounded support and EX2 1 < ∞. We show that for a large class of heavy tailed random variables with a finite variance the renewal function U satisfies U(x)− x μ − μ2 2μ2 ∼ − 1 μx ∫ ∞

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2018

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-018-0832-2